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The presence of more planes in this derived equilibrium 
form than the growth form described by Groth (1919), 
is quite normal. This difference is probably due to the 
velocity of growth of crystals in solutions. 

The authors wish to express their thanks to Dr K. V. 
Mirskaya for her kind assistance and to Dr Yu. T. 
Struchkov for his interest in the work undertaken. 
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On Least-squares Refinement of the Phases of Crystallographic Structure Factors 
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A least-squares technique for direct refinement of the phases of structure-factors of crystals which obey 
the equations a,Fh= ~FkFh-k is described. It is shown by tests carried out under somewhat idealized 

k 
conditions that the initial phases need not be of a completeness or accuracy sufficient to resolve the 
atoms of the structure. The technique may be able to provide a bridge in protein crystallography and 
structure determination generally between preliminary phasing techniques and final refinement of atom 
parameters. 

The refinement techniques in current use in crystallo- 
graphy (least-squares refinement of atomic parameters, 
Fourier refinement of atomic parameters and phases 
simultaneously) have the property that they cannot 
commence until the structure determination has pro- 
gressed to the point where an approximate set of atom 
parameters, or equivalently a set of phases sufficiently 
complete and accurate to yield a Fourier map from 
which such parameters can be read off, is available. Fre- 
quently, however, a less complete and accurate set of 
phases will be available at an earlier point in the deter- 
mination. In protein crystallography, for example, 
phases to 3-0-2.5 A resolution can be obtained by the 
method of multiple isomorphous replacement (m.i.r.). 
It may also be noted that Hauptman (1969) and Karle 
(1970) have given procedures which from the observed 
magnitudes alone produce rough approximations to 
the phases for any structure. Thus a refinement tech- 
nique which operated directly on phases rather than 
on atom parameters, and which was able to com- 
mence from an initial set of phases of less than atom- 
resolution quality, could be an important aid in com- 
pleting protein structures and perhaps in determining 
structures generally. 

In the present paper we consider, as a possible tech- 
nique of this kind, minimization of the expression 
~la~F~-~FkFh_kl'- as a function of the phases. This 
h k 
minimization may be regarded as a reciprocal-space 
analog of the ordinary least-squares refinement of atom 
parameters. Starting with an initial set {~0 °} of phases 
the process generates a sequence of approximations 
{~0~}, {~0~}, . . .  tending toward the set {~0j} at which the 
function is a minimum. Preliminary tests of the method 
conducted under partially realistic conditions are re- 
ported to show that the final set {~0j} can indeed be 
adequately close to the set {q~j} of true phases and that 
convergence to {rpj} can occur even when the initial 
set {~0~} is considerably below atom-resolution quality. 
{~0j} may alternatively be thought of as a least-squares 
solution of the equations 

a~F~= E &F~_~ (1) 
k 

(Sayre, 1952) without the usual approximation in- 
volved in replacing equation (1) by its corresponding 
set of triple-product relationships. 

We may pause briefly to put the present technique 



D. SAYRE 211 

into perspective. Hoppe (1963) proposed, although he 
apparently did not carry out, minimization of the ex- 
pression ~,wh(lFh[--la~l~,FkFh_k[) z as a means of phase 

h k 

refinement. This process would have been tantamount,  
however, to finding a least-squares solution only of the 
radial equations implied by (1). (It should be noted that 
each equation of form (1) really expresses two equa- 
tions, relating the real and imaginary parts of the two 
sides, or alternatively the radial and angular parts. This 
fact is useful in producing a considerable degree of 
overdetermination of {q)j}.) Subsequently Karle & 
Karle (1966) have elaborated the method known as 
tangent-formula refinement; their method is essentially 
the converse of the method suggested by Hoppe, since 
only the angular equations are allowed to play a full 
role. In addition their treatment uses E's  throughout 
instead of F 's  and replaces the minimization process 
by a form of fixed-point iteration (see e.g. Collatz, 
1966). All these features probably affect the conver- 
gence and accuracy of the method somewhat adversely. 
Perhaps most closely related to the present technique 
is the work of Krabbendam & Kroon (1971), who 
describe the minimization of a function similar to that 
employed here, but by a discrete search algorithm. 

Tests of the method to date have used error-free data 
calculated from artificial equi-atom structures in space 
group P 1. The structures were computer-generated and 
obeyed simple requirements on bond-lengths and dis- 
tances between non-bonded atoms. With data of this 
type, when all reflections within the Cu Ka sphere (i.e. 
out to 0.77 A resolution) are included, the agreement 
between {~0j} and {~j} is so close as to make it difficult 
to determine the relationship between them precisely. 
In the one case of this type that was studied the mean 
discrepancy between the two sets was 1.7 ° , and it is 
likely that much of this was due to round-off error in 
the computations. (In this and all other tests reported 
the F ' s  were adjusted to correspond to spherically sym- 
metrical Gaussian atoms of shape exp ( - 4 r  a) before 
submission to the phase-refinement procedure.) For 
this reason the principal tests were devoted to more 
realistic cases, in which data-incompleteness could be 
expected to play an important role. 

In the principal tests of this type an attempt was 
made to reproduce the data-incompleteness typically 
encountered in protein crystallography. It was assumed 
that only 8 independent reflections/atom could be ob- 
served, and that these would coincide with the reflec- 
tions which were strongest when the atoms were given 
a temperature-factor B of 20. The size of the structures 
was set at 100 atoms. Under these conditions 800 re- 
flections were available for a structure, of which ap- 
proximately 150 lay within the sphere of 3 A resolution 
and approximately 650 lay outside that sphere. An oc- 
casional reflection to 1.5 A or 1.4 A was observed. The 
initial phases (p~ consisted of the correct phases ~bj for 
the structure-factors within the 3 A sphere, which were 
assumed to be known from m.i.r.; for j >  ,-,150, on 
the other hand, ~0~ was undefined. {~0}} was obtained for 
1 < j  < ~ 150 by setting (p} = (p~, and for,-, 150 < j  < 800 by 
setting ~0} equal to the phase assumed by ~,FkF.l_ k when 
only the terms involving F ' s  with (pl already assigned 
were included; {~0)} was thus obtained by simple tan- 
gent formula extension. The minimization process was 
begun at this point. Only the phases of structure-fac- 
tors lying outside the 3 A sphere were allowed to change 
in this process. Table 1 summarizes the course of the 
refinement from this point for each of the five struc- 
tures studied. It is seen that initially the mean error of 
the extended phases varied from 54.0 to 69.3 ° . At the 
end of the refinement this error was reduced to 8.2- 
9.6 °. In the final sets {¢j} the proportion of refined 
phases correct to within 30 ° was 96-98 %. 3-dimen- 
sional Fourier syntheses made with refined phases are 
essentially indistinguishable from those made with all 
correct phases, and in them most of the individual atoms 
can be seen as separate objects. 

Earlier attempts to extend protein data beyond 3 A 
resolution have been reported by Hoppe & Gassmann 
(1964), Reeke & Lipscomb (1969), and Barrett & Zwick 
(1971). In the first two of these papers the method em- 
ployed was essentially that of tangent formula exten- 
sion. The first paper does not provide an estimate of 
the errors in the extended phases, but in the second the 
mean errors of various groups of the extended phases 
were estimated at 67 ° to 88 ° . (Note the approximate 
agreement with the errors in {~0}} in the present work.) 

Table 1. Summary of  the refinements of  five lO0-atom 'protein-like' structures 

Rows refer to {~0i~}. The first five columns trace R ='~lahFh--~FxFn-kl 2, which is the quantity being minimized. The last five 
columns trace the mean error of the extended phases. The number of extended phases in each structure was: I, 653; II, 657; 
III, 657; IV, 654; V, 652. 

2 
3 
4 
5 

10 
15 
20 
25 

I 

1"01 109 
4"26 108 
2-98 108 
2"39 108 
2.03 108 
8"64 107 
7"37 107 
7"37 107 
7"37 107 

II 

1"03 • 109 
5"23 108 
3"84 108 
3"17 108 
2"67 108 
1"03 108 
6"85 107 
6"79 107 
6"79 107 

R 
III 

1.74 109 
6.28 108 
4.15 108 
3.34 108 
2.82 108 
1.20 108 
8.06 107 
6.88 107 
6"88 107 

IV 

1.11 
4.56 
2.85 
2.13 108 
1.76 108 
7-74 107 
7.06 107 
7.06 107 
7.06 107 

109 
108 
108 

V 

3.68 109 
7.74 108 
5.03 108 
3.98 108 
3.14 108 
1.46 108 
8.61 107 
7.14 107 
7.06 107 

Mean of ACa 
I II III IV V 

54.0 ° 60.7 ° 61.9 ° 54.8 ° 69.3 ° 
42.6 53.7 54.7 43.8 60.7 
34.9 47.3 47.2 34.0 54.6 
30.7 43.2 43.5 27.8 49"3 
27-4 38.2 39.3 23.1 44.7 
12.7 16.3 19"5 9-7 25.0 
9-5 8-6 11.3 8.5 12.8 
9.4 8.3 9.6 8.4 9.0 
9"4 8-2 9.6 8.4 8.8 

A C 28A - 8* 
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In the third paper a method based upon truncating 
the negative portions of Q(x) was used, with an esti- 
mate of the mean error of 78 °. These results are in sharp 
contrast with the mean errors of less than 10 ° found 
for the present method. It must be remembered, how- 
ever, that the above authors used real protein data, and 
also that not having an accurate knowledge of the cor- 
rect phases they may have overestimated somewhat the 
mean error of their extended phases. 

It is necessary to bear in mind, in considering the 
present technique, that enough reflections must be in- 
cluded to make a reasonably well resolved structure 
possible. If, for example, the observations in the pre- 
ceding experiments had ended at 2 A resolution the 
mean errors of the final sets of extended phases would 
have risen to 17.2-24.7 ° . This is in keeping with the 
fact that equations (1) express a condition on the phases 
of a reasonably well resolved structure. The omission 
of terms in (1) can to some extent be compensated for 
by reducing the ah, which are known real numbels, 
appropriately in size. This was done, in all the experi- 
mentsreported,  by multiplication of each ah by an em- 
pirical factor of the form p - q R - r R  2, where R = lhl. 
It is found that the optimal values of the parameters 
p, q, r depend upon the amount and type of data in- 
completeness, but are independent of the structure. 

The computer program which was used to accom- 
plish the minimization in these tests is quite straight- 
forward. Working from the current phases it evaluates 
the difference between the left- and right-hand sides 
of equations (1), noting the amounts (real part and 
imaginary part) by which each. equation fails and com- 
puting the derivatives of these parts with respect to 
each phase under refinement; from these quantities it 
computes a set of increments to the phases by produc- 
ing and solving the normal equations (full set); finally 
it adds these increments and recycles. Coded in Fortran 
and run on a 360 model 91 it takes approximately 4½ 
minutes/cycle for the 650-parameter refinements de- 
scribed. The initial cycle is modified to produce {~0}} 
from {~0 °} as noted earlier. The program needs to be 
generalized to deal with the usual non-centrosym- 
metrical space-groups, which unlike P 1 present special 
classes of structure-factors whose phases cannot be 
handled by a purely continuous refinement process. 

Tests of the method on data from a real protein are 
planned in the near future. The severest problem is 
likely to be the computation itself, with its very con- 
siderable problems of scale, but errors in the data and 
m.i.r, phases, and departures of the structure from the 
idealized structures considered here, may also provide 
difficulties. 

It may be worth mentioning that another, somewhat 
smaller, group of tests was carried out in a setting in- 
tended to mimic the situation which might arise in 
structure determination generally if approximations to 
the phases were calculated directly from the magnitudes 
by a method like those mentioned earlier. Here the 
problem would be one of extending phases, not from 
the inner to the outer reflections, but from the strongest 
to the somewhat less strong. Using 50-atom structures, 
phases were extended from the 50 strongest F 's  within 
the Cu Kc~ sphere to the 450 next-strongest, with mean 
errors in the final values of the extended phases of 
5.8_9.5 °" 

In conclusion the author wishes to express his thanks 
to Dr Alexander Tulinsky, of the Department of Chem- 
istry at Michigan State University, whose suggestion 
that a direct method for phase extension would be of 
value in protein crystallography was the impetus for 
this work. 
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